Traveling Wave Solutions for Bistable Differential-Difference Equations with Periodic Diffusion
نویسندگان
چکیده
We consider traveling wave solutions to spatially discrete reaction-diffusion equations with nonlocal variable diffusion and bistable nonlinearities. To find the traveling wave solutions we introduce an ansatz in which the wave speed depends on the underlying lattice as well as on time. For the case of spatially periodic diffusion we obtain analytic solutions for the traveling wave problem using a piecewise linear nonlinearity. The formula for the wave forms is implicitly defined in the general periodic case and we provide an explicit formula for the case of period two diffusion. We present numerical studies for time t = 0 fixed and for the time evolution of the traveling waves. When t = 0 we study the cases of homogeneous, period two, and period four diffusion coefficients using a cubic nonlinearity, and uncover, numerically, a period doubling bifurcation in the wave speed versus detuning parameter relation. For the time evolution case we also discover a detuning parameter dependent bifurcation in observed phenomena, which is a product of both the nonlocal diffusion operator and the spinodal effects of the nonlinearity.
منابع مشابه
Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملThe extended homogeneous balance method and exact solutions of the Maccari system
The extended homogeneous balance method is used to construct exact traveling wave solutions of the Maccari system, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation. Many exact traveling wave solutions of the Maccari system equation are successfully obtained.
متن کاملTraveling Wave Solutions for Bistable Diierential-diierence Equations with Periodic Diiusion Draft Version
We consider traveling wave solutions to spatially discrete reaction-diiusion equations with nonlocal variable diiusion and bistable nonlinearities. For the case of spatially periodic diiusion we obtain analytic solutions for the traveling wave problem using a piecewise linear nonlinearity. The formula for the wave forms is implicitly deened in the general periodic case and we provide an explici...
متن کاملAnalysis and Computation of Traveling Wave Solutions of Bistable Differential-difference Equations
We consider traveling wave solutions to a class of diierential-diierence equations. Our interest is in understanding propagation failure, directional dependence due to the discrete Laplacian, and the relationship between traveling wave solutions of the spatially continuous and spatially discrete limits of this equation. The diierential-diierence equations that we study include damped and undamp...
متن کاملTraveling Wave Solutions of 3D Fractionalized MHD Newtonian Fluid in Porous Medium with Heat Transfer
In the present paper, we get exact solutions of Magnetohydrodynamic (MHD) of the fractionalized three-dimensional flow of Newtonian fluid with porous and heat transfer through the traveling wave parameter. The governing equations are produced dependent on established Navier-stokes equations which can be diminished to ordinary differential equation by wave parameter ξ=ax+by+nz+Utα/Γ(α...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 61 شماره
صفحات -
تاریخ انتشار 2001